Initialization enhancer for non-negative matrix factorization
نویسندگان
چکیده
Non-negative matrix factorization (NMF), proposed recently by Lee and Seung, has been applied to many areas such as dimensionality reduction, image classification image compression, and so on. Based on traditional NMF, researchers have put forward several new algorithms to improve its performance. However, particular emphasis has to be placed on the initialization of NMF because of its local convergence, although it is usually ignored in many documents. In this paper, we explore three initialization methods based on principal component analysis (PCA), fuzzy clustering and Gabor wavelets either for the consideration of computational complexity or the preservation of structure. In addition, the three methods develop an efficient way of selecting the rank of the NMF in lowdimensional space. r 2006 Elsevier Ltd. All rights reserved.
منابع مشابه
A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem. At each step of ALS algorithms two convex least square problems should be solved, which causes high com...
متن کاملIterative Weighted Non-smooth Non-negative Matrix Factorization for Face Recognition
Non-negative Matrix Factorization (NMF) is a part-based image representation method. It comes from the intuitive idea that entire face image can be constructed by combining several parts. In this paper, we propose a framework for face recognition by finding localized, part-based representations, denoted “Iterative weighted non-smooth non-negative matrix factorization” (IWNS-NMF). A new cost fun...
متن کاملA new approach for building recommender system using non negative matrix factorization method
Nonnegative Matrix Factorization is a new approach to reduce data dimensions. In this method, by applying the nonnegativity of the matrix data, the matrix is decomposed into components that are more interrelated and divide the data into sections where the data in these sections have a specific relationship. In this paper, we use the nonnegative matrix factorization to decompose the user ratin...
متن کاملAn improved non-negative matrix factorization algorithm based on genetic algorithm
The non-negative matrix factorization (NMF) algorithm is a classical matrix factorization and dimension reduction method in machine learning and data mining. However, in real problems, we always have to run the algorithm for several times and use the best matrix factorization result as the final output because of the random initialization of the matrix factorization. In this paper, we proposed ...
متن کاملInitializing Nonnegative Matrix Factorization using the Successive Projection Algorithm for multi-parametric medical image segmentation
As nonnegative matrix factorization (NMF) represents a nonconvex problem, the quality of its solution will depend on the initialization of the factor matrices. This study proposes the Successive Projection Algorithm (SPA) as a feasible NMF initialization method. SPA is applied to a multi-parametric MRI dataset for automated NMF brain tumor segmentation. SPA provides fast and reproducible estima...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Eng. Appl. of AI
دوره 20 شماره
صفحات -
تاریخ انتشار 2007